Пошук по сайту

Алгебра  лекції  Курсова робота  Рефераты  

Програма пояснювальна записка мета

Програма пояснювальна записка мета









ПРОГРАМА

ПОЯСНЮВАЛЬНА ЗАПИСКА
Мета навчання математики полягає у забезпеченні загальноосвітньої підготовки з математики, необхідної для успішної самореалізації особистості у динамічному соціальному середовищі, її соціалізації і достатньої для вивчення профільних предметів, для успішної майбутньої професійної діяльності в тих сферах, де математика відіграє роль апарату, специфічного засобу для вивчення й аналізу закономірностей, реальних явищ і процесів.

Досягнення зазначеної мети забезпечується виконанням таких завдань:

  • формування в учнів наукового світогляду, уявлень про ідеї і методи математики, її ролі у пізнанні дійсності, усвідомлення математичних знань як невід’ємної складової загальної культури людини, необхідної умови повноцінного життя в сучасному суспільстві; стійкої мотивації до навчання;

    • оволодіння учнями мовою математики в усній та письмовій формах, системою математичних знань, навичок і умінь, потрібних у повсякденному житті та майбутній професійній діяльності, достатніх для успішного оволодіння іншими освітніми галузями знань і забезпечення неперервності освіти;

    • інтелектуальний розвиток особистості, передусім розвиток в учнів логічного мислення і просторової уяви, алгоритмічної, інформаційної та графічної культури, пам’яті, уваги, інтуїції;

    • екологічне, естетичне, громадянське виховання та формування позитивних рис особистості;

    • формування життєвих і соціально-ціннісних компетентностей учня.


Структура програми
Програма з математики для вступників до вищих навчальних закладів І та II

рівнів акредитації у 2014 р. складається з трьох розділів.

Перший з них містить перелік основних понять і фактів алгебри і геометрії, що їх повинні знати вступники; другий -теореми і формули.

У третьому розділі перелічено основні математичні вміння і навички, якими має володіти вступник.


  1. Основні математичні поняття і факти




  1. Читання і запис натуральних чисел. Порівняння натуральних чисел. Дії над натуральними числами.

  2. Подільність натуральних чисел. Дільники і кратні натурального числа. Парні і непарні числа. Ознаки подільності на 2, 3, 5, 9, 10. Ділення з остачею. Прості і складені числа. Розкладання натурального числа на прості множники. Найбільший спільний дільник, найменше спільне кратне.

  3. Звичайні дроби. Порівняння звичайних дробів. Правильний і неправильний дріб. Ціла та дробова частина числа. Основна властивість дробу. Скорочення дробу. Середнє арифметичне кількох чисел. Основні задачі на дроби.

  4. Раціональні та ірраціональні числа, їх порівняння та дії над ними.

  5. Відсотки. Основні задачі на відсотки.

  6. Степінь з натуральним і раціональним показником. Арифметичний корінь та його властивості.

  7. Логарифми та їх властивості. Основна логарифмічна тотожність. Показникова і логарифмічна функції.

  8. Одночлен і многочлен. Дії над ними. Формули скороченого множення.

  9. Многочлен з однією змінною. Корінь многочленна.

  10. Поняття функції. Способи завдання функції. Область визначення, область значень функції. Функція, обернена до даної.

  11. Графік функції. Зростання й спадання функції; періодичність, парність, непарність функції.

  1. Достатня умова зростання (спадання) функції на проміжку. Поняття екстремуму функції. Необхідна умова екстремуму. Найбільше і найменше значення функції на відрізку.

  2. Означення і основні властивості функцій: лінійної, квадратичної, степеневої, показникової, логарифмічної, тригонометричної.

  3. Рівняння. Розв'язування рівнянь, визначення розв'язків рівняння. Рівносильні рівняння. Графік рівняння з двома змінними.

  4. Нерівності. Розв'язування нерівностей, визначення розв'язків нерівностей. Рівносильні нерівності.

  1. Системи рівнянь та системи нерівностей. Розв'язування систем рівнянь та нерівностей, визначення розв'язків системи. Рівносильні системи рівнянь і нерівностей.

  2. Числові послідовності. Арифметична і геометрична прогресії. Формула п-го члена прогресії та суми її п перших членів. Формула суми членів нескінченної геометричної прогресії із знаменником |q| < 1.

  3. Залежність між тригонометричними функціями одного й того ж аргументу. Тригонометричні функції суми та різниці двох аргументів, половинного і подвійного аргументів. Формули зведення.

  1. Означення похідної, її механічний та геометричний змісти.

  2. Похідна. Таблиця похідних. Похідна суми, різниці, добутку, частки. Похідна складеної функції.

  3. Первісна та визначений інтеграл. Таблиця первісних елементарних функцій. Правила знаходження первісних. Формула Ньютона-Лейбніца.

  1. Перестановки (без повторень), кількість перестановок. Розміщення (без повторень), кількість розміщень. Комбінації (без повторень). Біном Ньютона.

  2. Найпростіші випадки підрахунку ймовірностей випадкових подій.

24. Статистичні характеристики рядів даних.
II. Геометрія

  1. Пряма, промінь, відрізок, ламана; довжина відрізка. Кут, величина кута. Вертикальні та суміжні кути. Паралельні прямі. Рівність і подібність геометричних фігур. Відношення площ подібних фігур.

  2. Приклади перетворення геометричних фігур, види симетрії.

  3. Декартові координати. Вектори. Операції над векторами.

  4. Многокутник. Вершини, сторони, діагоналі многокутника.

  5. Трикутник. Медіана, бісектриса, висота трикутника, їхні властивості. Види трикутників. Співвідношення між сторонами та кутами прямокутного трикутника.

  6. Чотирикутник: паралелограм, прямокутник, ромб, квадрат, трапеція; їхні властивості.

  7. Коло і круг. Центр, діаметр, радіус, хорда, січна кола. Залежність між відрізками у колі. Дотична до кола. Дуга кола. Сектор, сегмент.

  8. Центральні і вписані кути, їхні властивості.

  9. Формули площ геометричних фігур: трикутника, паралелограма, прямокутника, ромба, квадрата, трапеції.

  10. Довжина кола і довжина дуги кола. Радіанна міра кута. Площа круга і площа сектора.

  11. Площина. Паралельні площини і площини, що перетинаються.

  1. Паралельність прямої і площини.

  2. Кут між прямою і площиною. Перпендикуляр до площини.

  3. Двогранні кути. Лінійний кут двогранного кута. Перпендикулярність двох площин.

  4. Многогранники. Вершини, ребра, грані многогранника. Пряма і похила призми. Піраміда. Правильна призма і правильна піраміда. Паралелепіпеди, їх види.

  1. Тіла обертання: циліндр, конус, сфера, куля. Центр, діаметр, радіус сфери і кулі. Площина, дотична до сфери.

  2. Формули площі поверхонь і об'ємів призми, піраміди, циліндра, конуса.

  1. Формули площі поверхні сфери, об'єму кул




  1. Основні теореми і формули


Алгебра

1. Формула n-го члена арифметичної і геометричної прогресій.

2. Формула n перших членів арифметичної і геометричної прогресій.

3.Формула складних відсотків.

4. Функція , її графік і властивості.

5. Функція , а ¹ 0, її графік і властивості.

6. Формула коренів квадратного рівняння.

7. Функція y = x2 та її графік.

8.Тотожність 2 = │a│.

9. Функція y=, її графік і властивості.

10. Розкладання квадратного тричлена на лінійні множники.

11. Тригонометричні функції.

12. Показникова і логарифмічна функції

13.Таблиця похідних.

14.Таблиця первісних.

15. Комбінації
Геометрія

1. Властивості рівнобедреного трикутника.

2. Властивості бісектриси кута.

3. Ознаки паралельності прямих.

4. Теорема про суму кутів трикутника.

5. Властивості паралелограма і його діагоналей.

6. Ознаки рівності, подібності трикутників.

7. Властивості прямокутника, ромба, квадрата.

8. Коло, вписане в трикутник, і коло, описане навколо трикутника.

9. Теорема про кут, вписаний в коло.

10. Властивості дотичної до кола.

11. Теорема Піфагора та наслідки з неї.

12. Значення синуса, косинуса та тангенса кутів 0°, 30°, 45°, 60°, 90°.

13. Співвідношення між сторонами і кутами прямокутного трикутника.

14. Сума векторів та її властивості.

15. Формули площ паралелограма, трикутника, трапеції.

16. Рівняння кола.

17. Формули площі поверхонь і об'ємів призми, піраміди, циліндра, конуса.

18. Формули площі поверхні сфери, об'єму кул



  1. Основні вміння і навички


Вступник повинен

виконувати математичні розрахунки (дії з числами, поданими в різних формах, дії з відсотками, складання та розв'язування пропорцій, наближені обчислення тощо);

  • виконувати перетворення виразів, що містять степеневі, показникові, логарифмічні і тригонометричні функції (розуміти змістове значення кожного елемента виразу, знаходити допустимі значення змінних, числові значення виразів при заданих значеннях змінних, виражати з рівності двох виразів одну змінну через інші тощо);

  • будувати, читати й аналізувати графіки функціональних залежностей, досліджувати їхні властивості;

  • розв'язувати рівняння, нерівності та їх системи, текстові задачі складанням рівнянь, нерівностей та їх систем;

  • зображати та знаходити на рисунках геометричні фігури, встановлювати їхні властивості й виконувати геометричні побудови;

  • знаходити кількісні характеристики геометричних фігур (довжини, величини кутів, дуг, площі, об'єми);

  • обчислювати ймовірності випадкових подій та розв'язувати найпростіші комбінаторні задачі;

  • виконувати операції над векторами і використовувати їх при розв'язуванні практичних задач і вправ;

  • застосовувати похідну при дослідженні функцій на зростання (спадання), на екстремум, а також для побудови графіків функцій;

  • аналізувати інформацію, яка подана в різних формах (графічній, табличній, текстовій та ін.);

  • будувати математичні моделі реальних об'єктів, процесів і явищ та досліджувати ці моделі засобами математики.

ЛІТЕРАТУРА

  1. Погорєлов А.В. Геометрія: Підруч. для 7–11 кл. серед. шк. – 2 вид. – К.: Освіта, 1992. – 352 с.

  2. Бевз Г.П. Алгебра: Проб. підруч. для 7–9 кл. серед. шк. – 2 вид. – К.: Освіта, 1997. – 303 с.

  3. Алгебра і початки аналізу: Підручник для 10–11 кл. серед. шк. / А.М. Колмогоров, О.М. Абрамов, Ю.П. Дудніцин та ін.; За ред. А.М. Колмогорова – К.: Рад. шк., 1992. – 350 с.

  4. Шкіль М.І. Алгебра і початки аналізу / М. І. Шкіль, З.І. Слєпкань, О.С. Дубенчук. – К.: Зодіак-Еко, 1999. – 608 с.

  5. Литвиненко І.М. Збірник задач для екзамену на атестат про середню школу / І.М. Литвиненко, Л.Я. Федченко, В.О. Швець. – Харків: ББН, 1999. – 169 с.

  6. Гусев В.А. Математика: Справочные материалы: Книга для учащихся / В.А. Гусев, А.Г. Мордкович. – М. Просвещение, 1988. – 416с.

  7. Говоров В.М. Сборник конкурсных задач по математике / В.М. Говоров, П.Т. Дыбов, Н.В. Мирошин, С.Д. Смирнов. – М.: Наука, 1983. – 382с.

  8. Практикум з розв'язання задач з математики / За заг. ред. В.І. Михайлівського. – К.: Вища школа, 1975. – 422с.

  9. Математика. Типові тестові завдання. Збірник / А.Р. Гальперін, О.Я. Михеєв: Навч. посіб. – Х.: Факт, 2008.

поділитися в соціальних мережах


Схожі:

Програма курсу за вибором «інформаційні технології проектування» пояснювальна записка
Тому одним із напрямів сучасної професій­ної освіти є підготовка фахівців, здат­них застосовувати певні автоматизовані системи І...

Пояснювальна записка Конкурсне випробування з математики проводиться...
О. В.Ісаенко, А.І. Супрун. Математика. Тестові завдання. 4 клас. –Х.: Країна мрій, 2009. – 48 с

7 пояснювальна записка до робочого навчального плану
«Державних санітарних правил І норм влаштування, утримання загальноосвітніх навчальних закладів та організації навчально-виховного...

Пояснювальна записка до робочого навчального плану
України від 11. 09. 2009 №854 «Про затвердження нової редакції Концепції профільного навчання у старшій школі», Державних санітарних...

7 пояснювальна записка до робочого навчального плану
«Про застосування окремих положень законодавства про освіту щодо функціонування гімназій, ліцеїв, колегіумів», Державних санітарних...

7 пояснювальна записка до робочого навчального плану
«Про застосування окремих положень законодавства про освіту щодо функціонування гімназій, ліцеїв, колегіумів», Державних санітарних...

Пояснювальна записка до робочого навчального плану
Міністерства освіти І науки України від 20. 10. 2005 «Про підсумки переходу початкової школи на новий зміст та структуру навчання»,...

Пояснювальна записка до робочого навчального плану
Міністерства освіти України від 20. 07. 2005 №217, листа Міністерства освіти І науки України від 10. 03. 2006 №1/9-140 «Про застосування...

Пояснювальна записка до робочого навчального плану Харківського ліцею...
«Про застосування окремих положень законодавства про освіту щодо функціонування гімназій, ліцеїв, колегіумів», Державних санітарних...

Пояснювальна записка цілі навчання математики. Навчання математики...
Ої невід’ємної складової загальної культури людини, необхідної умови її повноцінного життя в сучасному суспільстві на основі ознайомлення...



База даних захищена авторським правом © 2017
звернутися до адміністрації




a.ocvita.com.ua
Головна сторінка